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For a topological space X, let L(X) be the modal logic of X where � is interpreted 
as interior (and hence � as closure) in X. It was shown in [3] that the modal logics
S4, S4.1, S4.2, S4.1.2, S4.Grz, S4.Grzn (n ≥ 1), and their intersections arise as L(X)
for some Stone space X. We give an example of a scattered Stone space whose logic 
is not such an intersection. This gives an affirmative answer to [3, Question 6.2]. On 
the other hand, we show that a scattered Stone space that is in addition hereditarily 
paracompact does not give rise to a new logic; namely we show that the logic of 
such a space is either S4.Grz or S4.Grzn for some n ≥ 1. In fact, we prove this result 
for any scattered locally compact open hereditarily collectionwise normal and open 
hereditarily strongly zero-dimensional space.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Topological semantics for intuitionistic logic was first developed by Stone [24] and Tarski [25], and for 
modal logic by Tsao-Chen [26], McKinsey [15], and McKinsey and Tarski [16–18]. In topological semantics 
for intuitionistic logic formulas are interpreted as open sets, and in topological semantics for modal logic 
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modal box is interpreted as topological interior, and hence modal diamond as topological closure. For a 
topological space X, let L(X) be the set of formulas in the basic modal language that are valid in X. It 
is well known that L(X) is a normal extension of Lewis’ modal system S4. Much effort has been put into 
axiomatizing L(X) for a given topological space X with good separation properties. To name a few results 
in this direction:

• McKinsey and Tarski [16] developed an algebraic treatment of topological spaces via closure algebras. 
Their key result establishes that the variety of all closure algebras is generated by the closure algebra 
of any dense-in-itself separable metrizable space. Since closure algebras serve as algebraic models of S4, 
their result is often phrased as S4 = L(X) for any dense-in-itself separable metrizable space X.

• Rasiowa and Sikorski [21, Sections III.7 and III.8] showed that separability can be dropped from the 
McKinsey–Tarski theorem, and that L(X) = S4 for any dense-in-itself metrizable space X.

• These results were utilized in [5] to axiomatize L(X) for every metrizable space X. Let Iso(X) be the 
set of isolated points of X. If Iso(X) is not dense in X, then L(X) = S4; if Iso(X) is dense in X and 
X is not scattered, then L(X) = S4.1; and if X is scattered, then L(X) is S4.Grz or S4.Grzn for some 
n ≥ 1 depending on the Cantor–Bendixson rank of X.

One of the most studied classes of topological spaces is that of compact Hausdorff spaces. A natural 
but quite complicated question is to axiomatize L(X) for an arbitrary compact Hausdorff space X. This 
question was taken up in [3] in the setting of zero-dimensional compact Hausdorff spaces, also known as 
Stone spaces. It was shown in [3] that each of the logics S4, S4.1, S4.2, S4.1.2, S4.Grz, S4.Grzn (n ≥ 1), 
and their intersections can be realized as L(X) where X is a metrizable Stone space or an extremally 
disconnected Stone space. We note that for the extremally disconnected setting, these results utilize a 
set-theoretic assumption beyond ZFC. Thus, upon leaving the setting of metrizable spaces, whether one 
works within ZFC or an extension of it matters, revealing interesting ties with set theory.

In [3, Question 6.2] it was posed as an open question whether there is a Stone space whose logic is not one 
of the previously mentioned logics. The goal of the present paper is to answer this question in the affirmative 
by proving that the Čech-Stone compactification of a space studied by Mrowka [19,20] is a scattered Stone 
space whose logic differs from the above logics.

On the other hand, we prove that if X is a scattered Stone space that in addition is hereditarily para-
compact, then L(X) is S4.Grz or S4.Grzn for some n ≥ 1 depending on the Cantor–Bendixson rank of X. 
In fact, we prove a stronger result that if X is a scattered locally compact open hereditarily collectionwise 
normal and open hereditarily strongly zero-dimensional space, then L(X) is either S4.Grz or S4.Grzn for 
some n ≥ 1 depending on the Cantor–Bendixson rank of X. Our results are proved within ZFC, with a key 
technical tool being the notion of modal Krull dimension introduced in [7].

The axiomatization of L(X) for X a Stone space, or more generally a compact Hausdorff space, remains 
a challenging open problem, already in the restricted setting of scattered spaces. Indeed, the logic L(X) of 
the space X alluded to above which answers [3, Question 6.2] is difficult to axiomatize due to combinatorial 
complexity of the frames for L(X). It is likely that there will be different solutions of the problem based on 
set-theoretic assumptions beyond ZFC.

The paper is organized as follows. In Section 2 we provide the necessary background for the paper. 
Section 3 presents some basic results about modal Krull dimension for compact Hausdorff spaces, and 
Section 4 generalizes some of these results to locally compact Hausdorff spaces. In Section 5 we answer [3, 
Question 6.2] affirmatively by utilizing the work of Mrowka. In particular, we exhibit a scattered Stone 
space whose logic is not one of S4.Grz or S4.Grzn for n ≥ 1. The rest of the paper answers negatively the 
question obtained from modifying [3, Question 6.2] by replacing Stone space with scattered locally compact 
hereditarily paracompact space. Section 6 contains necessary technical background for Section 7, where a 
classification of the logics arising as L(X) for a scattered locally compact hereditarily paracompact space 
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X is given. In fact, we prove the same classification by weakening the hereditarily paracompact condition 
to the open hereditarily collectionwise normal and open hereditarily strongly zero-dimensional conditions. 
The final section of the paper closes with a list of open problems.

2. Background

In this section we briefly recall the modal logics of interest, as well as their relational and topological 
semantics. We also recall the modal Krull dimension of a topological space, which will be one of our key 
tools in what follows.

2.1. Modal logics

The modal logic S4 is the least set of formulas in the basic modal language containing the classical 
tautologies, the formulas

• �(p → q) → (�p → �q),
• �p → p,
• �p → ��p,

and closed under the inference rules of modus ponens ϕ, ϕ→ψ
ψ , substitution ϕ(p1,...,pn)

ϕ(ψ1,...,ψn) , and necessitation ϕ�ϕ . 
A normal extension of S4 is a set of formulas that contains S4 and is closed under modus ponens, substi-
tution, and necessitation.

As is customary, we use the abbreviation �ϕ := ¬�¬ϕ. We will consider the following well-known normal 
extensions of S4:

• S4.1 = S4 + ��p → ��p,
• S4.2 = S4 + ��p → ��p,
• S4.1.2 = S4 + ��p ↔ ��p,
• S4.Grz = S4 + �(�(p → �p) → p) → p,
• S4.Grzn = S4.Grz + bdn for n ≥ 1,

where bd1 = ��p1 → p1 and bdn+1 = �(�pn+1 ∧ ¬bdn) → pn+1.

2.2. Relational semantics

An S4-frame is a pair F = (W, R) where W is a nonempty set and R is a reflexive and transitive relation 
on W . The modal language is interpreted in F as usual (see, e.g., [9] or [8]). We only point out that

w � �ϕ iff (∀v)(wRv ⇒ v � ϕ),

and hence

w � �ϕ iff (∃v)(wRv and v � ϕ).

We say that ϕ is valid in F, and write F � ϕ, if for each valuation and each w ∈ W we have w � ϕ. It is 
well known that S4 
 ϕ iff F � ϕ for every S4-frame F.

For an S4-frame F = (W, R) we have that ∼R:= {(w, v) | wRv and vRw} is an equivalence relation on W , 
whose equivalence classes are called clusters. A singleton cluster is called simple. The skeleton of F is the 
partially ordered set of clusters of F, see Fig. 1.
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Fig. 1. An S4-frame F and its skeleton.

For w, v ∈ W , we write w�Rv if wRv and ¬(vRw). The depth of F is n, denoted depth(F) = n, if there is 
a sequence w1, . . . , wn in W such that wi

�Rwi+1 for 1 ≤ i < n and no longer sequence has this property.
A root of F is a point r ∈ W such that rRw for all w ∈ W . We say that F is rooted if F has a root. We 

call F a tree provided that F is a rooted partially ordered set such that for all w, v, u ∈ W , if vRw and uRw, 
then vRu or uRv. We say that F is a quasi-tree provided its skeleton is a tree.

A quasi-maximal point of F is w ∈ W such that for any v ∈ W , if wRv, then vRw. By max(F) we denote 
the set of quasi-maximal points of F. The following result is well-known (see, e.g., [3, Proposition 2.5] for 
references and details):

Proposition 2.1.

1. S4 is the logic of the class of all finite quasi-trees.
2. S4.1 is the logic of the class of all finite quasi-trees such that the cluster of each quasi-maximal point is 

simple.
3. S4.2 is the logic of the class of all finite S4-frames F such that max(F) is a single cluster and the 

subframe W \ max(F) is a quasi-tree.
4. S4.1.2 is the logic of the class of all finite S4-frames F such that max(F) is a singleton and the subframe 

W \ max(F) is a quasi-tree.
5. S4.Grz is the logic of the class of all finite trees.
6. S4.Grzn is the logic of the class of all finite trees of depth ≤ n.

2.3. Topological semantics

For a topological space X, we denote the interior, closure, and derivative operators of X by iX , cX , 
and dX . We briefly recall that for each A ⊆ X and x ∈ X, we have:

x ∈ iXA iff there is an open neighborhood U of x such that U ⊆ A,

x ∈ cXA iff for each open neighborhood U of x, we have U ∩A �= ∅,

x ∈ dXA iff for each open neighborhood U of x, we have (U \ {x}) ∩A �= ∅.

We often omit the subscript when the context is clear. The modal language is interpreted in X by assigning 
to each modal formula a subset of X, interpreting the classical connectives as the Boolean operations, � as 
interior, and hence � as closure. Thus, under a given valuation of the propositional variables, we have:

x � �ϕ iff for some open neighborhood U of x, each y ∈ U satisfies y � ϕ,

x � �ϕ iff for each open neighborhood U of x, there is y ∈ U such that y � ϕ.

We say that a formula ϕ is valid in X, written X � ϕ, if for each valuation and each x ∈ X we have x � ϕ. 
It is well known that the set L(X) := {ϕ | X � ϕ} is a normal extension of S4.

Topological semantics generalizes relational semantics for S4. Given an S4-frame F = (W, R), call U ⊆ W

and R-upset if w ∈ U and wRv imply v ∈ U . Then the collection τR of R-upsets is a topology on W
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such that F � ϕ iff (W, τR) � ϕ. Such spaces are called Alexandroff spaces, and they have the additional 
property that an arbitrary intersection of open sets is open; equivalently, each point w has a least open 
neighborhood, namely ↑w := {v | wRv}. Consequently, the closure of A in an Alexandroff space is ↓A :=
{v | vRw for some w ∈ A}. We write ↓w for ↓{w}.

For a topological space X, a subset A ⊆ X is dense if cA = X and it is nowhere dense if icA = ∅. A point 
x ∈ X is an isolated point if {x} is open in X. Let Iso(X) be the set of isolated points of X. Then X is 
dense-in-itself if Iso(X) = ∅, X is weakly scattered if Iso(X) is dense, and X is scattered if every nonempty 
subspace Y of X has an isolated point (relative to Y ). We say that X is extremally disconnected if the 
closure of each open set is open.

Definition 2.2. ([7]) The modal Krull dimension of a topological space X, denoted mdim(X), is defined 
recursively as follows:

mdim(X) = −1 if X = ∅,

mdim(X) ≤ n if mdim(Y ) ≤ n− 1 for each nowhere dense subspace Y ⊆ X,

mdim(X) = n if mdim(X) ≤ n and mdim(X) �≤ n− 1,
mdim(X) = ∞ if mdim(X) �≤ n for all n = −1, 0, 1, 2, . . .

We point out two characterizations of finite modal Krull dimension for nonempty spaces (see [7, Theo-
rem 3.6] for a larger list of equivalent conditions).

Proposition 2.3. ([7]) Let X be a nonempty space and n ≥ 1. The following are equivalent:

1. X � bdn.
2. mdim(X) ≤ n − 1.
3. There does not exist a sequence F0, . . . , Fn of nonempty closed subsets of X such that F0 = X and Fi+1

is nowhere dense in Fi for each 0 ≤ i < n.

For an S4-frame F = (W, R), we have depth(F) = mdim(W, τR) + 1. As pointed out in [7, Section 2], the 
difference of 1 arises because depth counts the elements in a longest chain of F while modal Krull dimension 
counts the links between elements of such a chain, which is 1 less. It follows that the modal Krull dimension 
is the topological analogue of the depth of an S4-frame. The following result is well known (see, e.g., [3, 
Section 2] for references and details):

Proposition 2.4.

1. S4 is the logic of the class of all (finite) spaces.
2. S4.1 is the logic of the class of all (finite) weakly scattered spaces.
3. S4.2 is the logic of the class of all (finite) extremally disconnected spaces.
4. S4.1.2 is the logic of the class of all (finite) extremally disconnected weakly scattered spaces.
5. S4.Grz is the logic of the class of all (finite) scattered spaces.
6. S4.Grzn is the logic of the class of all (finite) scattered spaces of modal Krull dimension ≤ n − 1.

3. Compact Hausdorff spaces of finite modal Krull dimension

In this section we present some results about modal Krull dimension for compact Hausdorff spaces that 
will be utilized later. In particular, we show that continuous surjections between compact Hausdorff spaces 
do not increase modal Krull dimension, and we prove that if X is a compact Hausdorff space of finite modal 
Krull dimension, then X is scattered. This result was also obtained in [6, Remark 6.12] using the machinery 
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of point-free topology. For the benefit of the reader, we give a direct topological proof of this result that 
requires no knowledge of point-free topology.

We recall that a map f : X → Y between topological spaces is continuous if f−1[V ] is open in X whenever 
V is open in Y , that f is open if f [U ] is open in Y whenever U is open in X, and that f is closed if f [F ]
is closed in Y whenever F is closed in X. It is well known that a continuous mapping between compact 
Hausdorff spaces is closed. We call f irreducible provided f is a continuous closed surjection such that f [A]
is a proper subset of Y whenever A is a proper closed subset of X.

Lemma 3.1. If f : X → Y is irreducible and Z is nowhere dense in Y , then f−1[Z] is nowhere dense in X.

Proof. Let N = f−1[Z] and A = X \N . Since f is continuous and onto, we have:

f [ciA] ⊇ f [iA] = f [i(X \N)]

= f [if−1[Y \ Z]] ⊇ f [f−1[i(Y \ Z)]] = i(Y \ Z).

As f is closed, f [ciA] is a closed set containing i(Y \ Z). Because Z is nowhere dense in Y , we have that 
i(Y \Z) is dense in Y , so f [ciA] = Y . Since f is irreducible, ciA = X. Thus, icN = ∅, and hence f−1[Z] = N

is nowhere dense in X. �
Lemma 3.2. Suppose X, Y are compact Hausdorff, f : X → Y is a continuous surjection, and for n ≥ 1, 
Z0, . . . , Zn are nonempty closed subsets of Y such that Z0 = Y and Zi+1 is nowhere dense in Zi for 
0 ≤ i < n. Then there are nonempty closed subsets N0, . . . , Nn of X such that N0 = X and Ni+1 is nowhere 
dense in Ni for 0 ≤ i < n.

Proof. We construct recursively N0, . . . , Nn that satisfy the conditions of the lemma.
Basis step: Set N0 = X. Since Z0 is nonempty and f is onto, we have that N0 is nonempty. Clearly N0

is closed in X. It is well known (see, e.g., [14, page 102]) that there is a closed subspace X0 of X such that 
f0 : X0 → Z0 restricting f is irreducible.

Recursive step: Let 0 ≤ i < n, and a nonempty Ni closed in X, Xi closed in Ni, and an irreducible 
surjection fi : Xi → Zi restricting f be given. Set Ni+1 = f−1

i [Zi+1]. Since fi is onto and Zi+1 �= ∅, we 
have that Ni+1 �= ∅. Clearly Ni+1 is closed in X. By Lemma 3.1, Ni+1 is nowhere dense in Xi. Therefore, 
Ni+1 is nowhere dense in Ni. The map gi+1 : Ni+1 → Zi+1 restricting fi is a continuous surjection. Since 
both Ni+1 and Zi+1 are compact Hausdorff spaces, there is a closed subspace Xi+1 of Ni+1 such that 
fi+1 : Xi+1 → Zi+1 restricting gi+1 is irreducible. The result follows. �
Lemma 3.3. If X, Y are compact Hausdorff and f : X → Y is a continuous surjection, then mdim(X) ≥
mdim(Y ).

Proof. First suppose that Y has finite modal Krull dimension, say mdim(Y ) = n. If n = −1, then Y = ∅, 
so X = ∅, giving mdim(X) = −1 = mdim(Y ). Suppose n ≥ 0. Then Y �= ∅. Since f is onto, X �= ∅, and 
so mdim(X) ≥ 0. Clearly if n = 0, then mdim(X) ≥ mdim(Y ). Suppose that n ≥ 1. Then Proposition 2.3 is 
applicable, and so there are nonempty closed subsets Z0, . . . , Zn of Y such that Z0 = Y and Zi+1 is nowhere 
dense in Zi for 0 ≤ i < n. By Lemma 3.2, there are nonempty closed subsets N0, . . . , Nn of X such that 
N0 = X and Ni+1 is nowhere dense in Ni for 0 ≤ i < n. Therefore, mdim(X) ≥ n by Proposition 2.3. Thus, 
mdim(X) ≥ mdim(Y ).

Next suppose that mdim(Y ) = ∞. Then mdim(Y ) ≥ n for all n ≥ 1. By Proposition 2.3, for each n ≥ 1, 
there are nonempty closed subsets Z0, . . . , Zn of Y such that Z0 = Y and Zi+1 is nowhere dense in Zi for 
0 ≤ i < n. By Lemma 3.2, there are nonempty closed subsets N0, . . . , Nn of X such that N0 = X and Ni+1
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Fig. 2. Depiction of f : X → Y .

is nowhere dense in Ni for 0 ≤ i < n. Applying Proposition 2.3 again yields mdim(X) ≥ n for each n ≥ 1. 
Thus, mdim(X) = ∞ = mdim(Y ). �
Remark 3.4. By [7, Lemma 3.3], taking subspaces does not increase modal Krull dimension. Lemma 3.3
shows the same for taking continuous images in the class of compact Hausdorff spaces. As the following 
examples demonstrate, neither compact nor Hausdorff can be dropped from the hypothesis of Lemma 3.3.

For the first example, let X be the real line R with the discrete topology, Y be R with the usual topology, 
and f : X → Y be the identity map. Then f is a continuous surjection, but mdim(X) = 0 (since the only 
nowhere dense subset of any nonempty discrete space is ∅) whereas mdim(Y ) = ∞ by [7, Example 3.7.1].

For the second example, let X and Y be the Alexandroff spaces and f : X → Y the map between them 
depicted in Fig. 2. Then f is a continuous surjection, but mdim(X) = depth(X) − 1 = 2 − 1 = 1 while 
mdim(Y ) = depth(Y ) − 1 = 3 − 1 = 2.

Theorem 3.5. If X is a compact Hausdorff space of finite modal Krull dimension, then X is scattered.

Proof. If X is not scattered, then there is a continuous surjection f : X → [0, 1] (see, e.g., [22, The-
orem 8.5.4]). Since mdim([0, 1]) = ∞, by Lemma 3.3, mdim(X) = ∞, a contradiction. Thus, X is 
scattered. �
4. Locally compact Hausdorff spaces of finite modal Krull dimension

This section generalizes Theorem 3.5 by replacing the assumption of compactness with local compactness. 
We also point out a connection between finite modal Krull dimension and the Cantor–Bendixson rank.

For a noncompact locally compact Hausdorff space X, let αX = X ∪ {∞} be the one-point compact-
ification of X (see, e.g., [10, Theorem 3.5.11]). The following lemma is useful in relating mdim(X) and 
mdim(αX).

Lemma 4.1.

1. Let X be a topological space and A, B, C ⊆ X. If C is closed in X and A is nowhere dense in B, then 
A \ C is nowhere dense in B \ C.

2. Let X be a noncompact locally compact Hausdorff space and A, B ⊆ αX. If A is nowhere dense in B, 
then A \ {∞} is nowhere dense in B \ {∞}.

Proof. (1) Let U be open in B \ C and U ⊆ cB\C(A \ C). Since C is closed in X, we have that B \ C is 
open in B. Therefore, U is open in B. Since A is nowhere dense in B, we have that A \C is nowhere dense 
in B. So U ⊆ cB\C(A \ C) ⊆ cB(A \ C) yields that U = ∅. Thus, A \ C is nowhere dense in B \ C.

(2) Observe that {∞} is closed in αX and apply (1). �
Lemma 4.2. Let X be a noncompact locally compact Hausdorff space and n ∈ ω. If mdim(X) ≤ n, then 
mdim(αX) ≤ n + 1.
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Proof. Suppose mdim(αX) > n +1. By Proposition 2.3, there are nonempty closed subsets F0, F1, . . . , Fn+2
of αX such that F0 = αX and Fi+1 is nowhere dense in Fi for 0 ≤ i < n + 2. Put F ′

i = Fi \ {∞} for 
0 ≤ i < n + 2. Then F ′

i = Fi ∩X is closed in X for 0 ≤ i < n + 2, F ′
0 = X, and by Lemma 4.1(2), F ′

i+1 is 
nowhere dense in F ′

i for 0 ≤ i < n + 1. If F ′
n+1 = ∅, then Fn+1 = {∞}. However, ∅ �= Fn+2 ⊆ Fn+1 = {∞}

gives that Fn+2 = {∞} = Fn+1, contradicting that Fn+2 is nowhere dense in Fn+1. Therefore, F ′
n+1 �= ∅, 

and hence mdim(X) > n by Proposition 2.3. �
Remark 4.3. Let X be a noncompact locally compact Hausdorff space. Since X is a subspace of αX, by 
[7, Lemma 3.3], mdim(X) ≤ mdim(αX). Therefore, if mdim(X) is finite, then Lemma 4.2 yields that 
mdim(X) ≤ mdim(αX) ≤ mdim(X) + 1. However, mdim(αX) could take on both values. For example, if 
X is the ordinal space ω, then mdim(X) = 0 (since X is discrete) and mdim(αX) = mdim(ω+1) = 1 by [7, 
Example 3.7.3]. On the other hand, if X is the ordinal ω2, then αX = ω2 +1. It follows from [7, Lemma 3.3 
and Example 3.7] that mdim(X) = mdim(αX) = 1 since ω + 1 ⊆ X ⊆ αX ⊆ ω2.

Lemma 4.4. Let X be a noncompact locally compact Hausdorff space. If X is scattered, then αX is scattered.

Proof. Let Y be a nonempty subspace of αX. If ∞ /∈ Y , then Y is a nonempty subspace of X, and since 
X is scattered, Y has an isolated point. Suppose ∞ ∈ Y . If Y = {∞}, then Y consists of a single isolated 
point. If Y �= {∞}, then Y \ {∞} is a nonempty subspace of X, and hence has an isolated point, say x. So 
there is U open in X such that {x} = (Y \ {∞}) ∩ U . Therefore, {x} = Y ∩ U . But U open in X and X
open in αX imply that U is open in αX. Thus, Y has an isolated point, and so αX is scattered. �
Theorem 4.5. Let X be locally compact Hausdorff.

1. If X is of finite modal Krull dimension, then X is scattered.
2. If X is scattered, then X is zero-dimensional.

Proof. (1) If X is compact, then apply Theorem 3.5. Suppose X is noncompact. By Lemma 4.2, αX is of 
finite modal Krull dimension. Since αX is compact Hausdorff, αX is scattered by Theorem 3.5. Therefore, 
X is a scattered space as it is a subspace of αX.

(2) If X is compact, then it is well known that X is zero-dimensional (see, e.g., [22, Theorem 8.5.4]). 
Suppose X is noncompact. By Lemma 4.4, αX is scattered. Being a scattered compact Hausdorff space, 
αX is zero-dimensional. But then X is zero-dimensional as it is a subspace of αX. �

The rest of this section relates finite modal Krull dimension and the Cantor–Bendixson rank. Let X be 
a topological space and let A ⊆ X. For an ordinal α define dαA by

d0A = A,

dα+1A = d(dαA),

dαA =
⋂

{dβA | β < α} if α is a limit ordinal.

The Cantor–Bendixson rank of X is the least ordinal γ satisfying dγX = dγ+1X. Setting D = dγX
and S = X \ D gives the Cantor–Bendixson decomposition of X into the dense-in-itself closed subspace 
D and the scattered open subspace S of X. If X is scattered, then D = ∅ and X = S. Similarly, if X is 
dense-in-itself, then X = D and S = ∅.

Recall that if Y is a subspace of X, then dnY A = dnX(A) ∩ Y for A ⊆ Y and n ∈ ω.

Lemma 4.6. If Y is an open subspace of X, then dnX(X) ∩ Y = dnY Y for each n ∈ ω.
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Proof. By induction on n ∈ ω. The base case follows from

d0
X(X) ∩ Y = X ∩ Y = Y = d0

Y Y.

Suppose dnX(X) ∩ Y = dnY Y . We have:

dn+1
Y Y = dY (dnY Y ) = dX(dnY Y ) ∩ Y

= dX(dnX(X) ∩ Y ) ∩ Y ⊆ dX(dnXX) ∩ Y = dn+1
X (X) ∩ Y.

Let x ∈ dn+1
X (X) ∩ Y . Suppose U is an open neighborhood of x in Y . Since Y is open, so is U in X. As 

x ∈ dX(dnXX), there is y ∈ U \ {x} such that y ∈ dnXX. Therefore, y ∈ dnX(X) ∩ Y = dnY Y , giving that 
x ∈ dY (dnY Y ) = dn+1

Y Y . Thus, dn+1
X (X) ∩ Y ⊆ dn+1

Y Y , and the result follows. �
Lemma 4.7. Let X be weakly scattered.

1. For each n ∈ ω and A ⊆ X, the set dn+1A is nowhere dense in X.
2. dX is the largest nowhere dense subset of X.

Proof. (1) Since dn+1A ⊆ dn+1X ⊆ dX, it is sufficient to show that dX is nowhere dense in X. Let U be 
a nonempty open set in X. Since X is weakly scattered, Iso(X) is dense, so U ∩ Iso(X) �= ∅. Therefore, 
U � X \ Iso(X) = dX. Since dX is closed, it follows that dX is nowhere dense in X.

(2) Let N be nowhere dense in X. Then Iso(X) ∩N = ∅. Therefore, N ⊆ X \ Iso(X) = dX, and so dX
is the largest nowhere dense subset of X. �
Remark 4.8. Since a scattered space is weakly scattered, Lemma 4.7 applies to scattered spaces.

Theorem 4.9. Let X be a nonempty scattered Hausdorff space and n ∈ ω. Then mdim(X) = n iff dn+1X = ∅
and dnX �= ∅.

Proof. By induction on n ∈ ω.
Base case: Let n = 0. Since X is a nonempty Hausdorff space, by [7, Remark 4.8 and Theorem 4.9], 

mdim(X) = 0 iff X is discrete, which happens iff X = Iso(X), which is equivalent to d1X = X \ Iso(X) = ∅
and d0X = X �= ∅.

Inductive case: Let n ≥ 0 and for every nonempty scattered Hausdorff space Y , we have mdim(Y ) = n

iff dn+1
Y Y = ∅ and dnY Y �= ∅.

Suppose mdim(X) = n +1. Set Y = dXX. By Lemma 4.7(1), Y is nowhere dense in X, so mdim(Y ) ≤ n. 
By Proposition 2.3, there are nonempty closed F0, . . . , Fn+1 in X such that F0 = X and Fi+1 is nowhere 
dense in Fi for 0 ≤ i < n + 1. By Lemma 4.7(2), F1 ⊆ Y , so F2 is nowhere dense in Y . Therefore, 
Y, F2, . . . , Fn+1 are closed in Y , F2 is nowhere dense in Y , and Fi+1 is nowhere dense in Fi for 2 ≤ i < n +1. 
Applying Proposition 2.3 again yields mdim(Y ) ≥ n. Thus, mdim(Y ) = n. Since Y is a nonempty closed 
scattered subspace of X, by the inductive hypothesis, we have:

dn+2
X X = dn+1

X (dXX) = dn+1
X Y = dn+1

X (Y ) ∩ Y = dn+1
Y Y = ∅

and

dn+1
X X = dnX(dXX) = dnXY = dnX(Y ) ∩ Y = dnY Y �= ∅.

Conversely, suppose dn+2
X X = ∅ and dn+1

X X �= ∅. Set Fi = diXX for 0 ≤ i ≤ n + 1. Then each Fi is a 
nonempty closed scattered subspace of X. Therefore, by Lemma 4.7(1), Fi+1 = dX(diXX) = dXFi = dFi

Fi
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is nowhere dense in Fi. Thus, X = F0, . . . , Fn+1 are nonempty closed subsets of X with Fi+1 nowhere dense 
in Fi for 0 ≤ i < n + 1. By Proposition 2.3, mdim(X) ≥ n + 1. Since F1 is closed in X, we have:

dn+1
F1

F1 = dn+1
X (F1) ∩ F1 = dn+1

X F1 = dn+1
X (dXX) = dn+2

X X = ∅

and

dnF1
F1 = dnX(F1) ∩ F1 = dnXF1 = dnX(dXX) = dn+1

X X �= ∅.

So, by the inductive hypothesis, mdim(F1) = n. Let N be nowhere dense in X. By Lemma 4.7(2), N ⊆ F1, 
so mdim(N) ≤ mdim(F1) = n by [7, Lemma 3.3]. Thus, mdim(X) ≤ n + 1, and so mdim(X) = n + 1. �
Corollary 4.10. Let X be a nonempty locally compact Hausdorff space of finite modal Krull dimension. Then 
the Cantor–Bendixson rank of X is mdim(X) + 1.

Proof. Let mdim(X) = n ∈ ω. By Theorem 4.5, X is scattered; and by Theorem 4.9, dnX �= ∅ and 
dn+1X = ∅. Thus, the Cantor–Bendixson rank of X is n + 1 = mdim(X) + 1. �
5. A new logic arising from a scattered Stone space

If X is a scattered space, then X � S4.Grz, so S4.Grz ⊆ L(X). Moreover, S4.Grz and S4.Grzn for each 
n ≥ 1 arise as L(X) for some scattered Stone space X. In this section we construct a scattered Stone 
space whose logic is not one of these logics, thus obtaining an affirmative answer to [3, Question 6.2]. 
Our construction utilizes the work of Mrowka [19,20]. Recall that a family R of infinite subsets of the 
natural numbers N is almost disjoint provided the intersection of any two distinct members of R is fi-
nite.

Definition 5.1. A Mrowka space is X := N ∪R where R is almost disjoint and the topology on X is generated 
by the basis consisting of:

• O(n) := {n} for n ∈ N,
• O(R, F ) := {R} ∪ (R \ F ) for R ∈ R and F ⊂ N finite.

It is a consequence of [19] that every Mrowka space X has the following properties:

Proposition 5.2.

1. N is open and dense in X.
2. R is closed and discrete in X.
3. O(R) := O(R, ∅) is a clopen subset of X.
4. O(R) is homeomorphic to the one-point compactification αN of N.

Consequently, a Mrowka space X is a scattered locally compact Hausdorff space. If R is infinite, then X is 
not compact. By [20], there is an infinite almost disjoint family R such that the Čech-Stone compactification 
βX of X is the one-point compactification αX of X. From now on, we will assume that X is a Mrowka 
space such that βX = αX, see Fig. 3.

Lemma 5.3. The space βX = X ∪ {∞} is compact, scattered, and has modal Krull dimension 2.
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Fig. 3. Depiction of βX = αX for a Mrowka space X, and of O(R) for R ∈ R.

Proof. Clearly βX is compact. Since X is scattered, αX is scattered by Lemma 4.4. So βX = αX is 
scattered. Let d be the derivative operator in βX. Because N is the set of isolated points of βX, we have 
d(βX) = R ∪{∞}. Since R is discrete in X and ∞ is a limit point of R, the set of isolated points of d(βX)
is R. Therefore, d2(βX) = {∞} and d3(βX) = ∅. Thus, mdim(βX) = 2 by Theorem 4.9. �

Recall that a function f : X → Y between topological spaces is interior if f is continuous and open. 
Equivalently, f is interior provided f−1[cY A] = cXf−1[A] for each A ⊆ Y (see, e.g., [21, Section III.3]). We 
say that Y is an interior image of X provided that f is an interior surjection. We call a function f : X → F

from a topological space X to an S4-frame F = (W, R) interior provided that f : X → (W, τR) is interior, 
where (W, τR) is the Alexandroff space associated with F.

Lemma 5.4. Let Y be a space and F = (W, R) a partially ordered S4-frame such that there is m ∈ max(F). 
If F is an interior image of a clopen subspace Z of Y , then F is an interior image of Y .

Proof. Let Z be a clopen subspace of Y and f : Z → F an interior surjection. Extend f to g : Y → F by 
setting g(x) = m for x ∈ Y \Z. Clearly g is a well-defined surjection. Let U be open in Y . Then both U ∩Z

and U \Z are open in Y , and U ∩Z is open in Z. So g[U ] = g[U ∩Z] ∪ g[U \Z] = f [U ∩Z] ∪ g[U \Z]. Now 
f [U ∩ Z] is open in F since f is interior and U ∩ Z is open in Z. Also g[U \ Z] is either ∅ or {m}, both of 
which are open in F. Thus, g[U ] is open in F, and hence g is an open mapping.

Let U be an open subset of F. Then f−1[U ] is open in Z, and so is open in Y . If m /∈ U , then g−1[U ] =
f−1[U ] is open in Y . If m ∈ U , then g−1[U ] = (Y \ Z) ∪ f−1[U ] is a union of two open subsets of Y , and 
hence is open in Y . Thus, g is continuous, and so F is an interior image of Y . �
Lemma 5.5. Suppose that X is a Mrowka space such that βX = αX and F is a finite rooted partially ordered 
S4-frame. Then F is an interior image of βX iff F is an interior image of an open subspace of βX.

Proof. One implication is obvious. For the other, suppose that F is an interior image of an open subspace 
U of βX, say via f : U → F. Let x ∈ f−1(r) where r is the root of F. Since βX = αX is scattered, it is 
zero-dimensional. So there is V clopen in βX such that x ∈ V ⊆ U . Then V is open in U , and hence f |V is 
interior. It is onto since f [V ] is open in F and r = f(x) ∈ f [V ], giving that f [V ] = F. Applying Lemma 5.4
yields that F is an interior image of βX. �

Let F be a finite rooted partially ordered S4-frame of depth 2. Then F is isomorphic to a k-fork Fk

depicted in Fig. 4.

Lemma 5.6. For any k ∈ N, the k-fork Fk is an interior image of βX.

Proof. Choose and fix R ∈ R. The subspace O(R) is homeomorphic with the ordinal space ω + 1. For each 
k ∈ N, the k-fork Fk is an interior image of ω + 1 (see, e.g., [4, Lemma 3.4]), and hence Fk is an interior 
image of O(R). Since O(R) is open in βX and Fk is a finite poset, the result follows from Lemma 5.5. �
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Fig. 4. The k-fork Fk.

Consider the tree F depicted in Fig. 5.

Fig. 5. The tree F.

Lemma 5.7. Let F be as in Fig. 5.

1. F is not an interior image of βX.
2. F is not an interior image of any open subspace of βX.

Proof. (1) Suppose there is an onto interior map f : βX → F. Since N consists of isolated points and f is 
open, we have f [N] ⊆ {m1, m2}. Let R ∈ R. Since O(R) is open in βX, we have that f [O(R)] is open in F. 
If f(R) = r, then

f [O(R)] = f [{R} ∪R] = {f(R)} ∪ f [R] ⊆ {r} ∪ f [N] ⊆ {r} ∪ {m1,m2} = F \ {w},

which is not open in F. Therefore, f(R) �= r, and so f−1(r) = {∞}.
Put A = f−1(m1) and B = f−1[{w, m2}]. Then A and B are disjoint open subsets of X such that 

A ∪B = X. Thus, A and B are clopen, and hence completely separated subsets of X. By [10, Corollary 3.6.2], 
cA ∩ cB = ∅, where c is closure in βX. But

cA = cf−1(m1) = f−1[cF{m1}] = f−1[↓m1] = f−1[{m1, r}] = A ∪ {∞}

and

cB = cf−1[{w,m2}] = f−1[cF{w,m2}]
= f−1[↓{w,m2}] = f−1[{r, w,m2}] = B ∪ {∞},

yielding a contradiction as ∞ ∈ cA ∩ cB = ∅. Thus, no such f exists.
(2) follows immediately from (1) and Lemma 5.5. �
We will utilize the above lemmas to show that if X is a Mrowka space such that βX = αX, then L(X)

is different from S4.Grz and S4.Grzn for every n ≥ 1. For this we recall the so-called Fine-Jankov formula 
χF of a finite rooted S4-frame F = (W, R) (see [11]). Suppose that W has n elements, say w1, . . . , wn where 
w1 is a root of F, and define χF as the conjunction of the formulas:

• p1
• �(p1 ∨ · · · ∨ pn)
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• �(pi → ¬pj) for distinct 1 ≤ i, j ≤ n

• �(pi → �pj) when wiRwj

• �(pi → ¬�pj) when ¬(wiRwj).

The formula χF encodes the structure of the frame F in such a way that for any S4-frame G we have 
G � ¬χF iff F is not a p-morphic image of a generated subframe of G [11, Section 2, Lemma I]. The 
following generalizes Fine’s result to the topological setting (see [7, Lemma 3.5]):

Proposition 5.8. For a topological space X and a finite rooted S4-frame F we have X � ¬χF iff F is not an 
interior image of any open subspace of X.

We are ready to give an affirmative answer to [3, Question 6.2].

Theorem 5.9. For any Mrowka space X such that βX = αX we have that

S4.Grz3 + ¬χF ⊆ L(βX) ⊂ S4.Grz2

where χF is the Fine-Jankov formula of the tree F depicted in Fig. 5.

Proof. Since βX is scattered, S4.Grz ⊆ L(βX). By Lemma 5.3, mdim(βX) = 2. So by Proposition 2.3, 
βX � bd3 and βX � bd2. It follows from Lemma 5.7(2) and Proposition 5.8 that βX � ¬χF. Therefore, 
S4.Grz3 + ¬χF ⊆ L(βX).

Since S4.Grz2 is the logic of the k-forks Fk, k ≥ 1, and by Lemma 5.6, each Fk is an interior image of βX, 
we have that L(βX) ⊆ S4.Grz2. The containment is strict since L(βX) � bd2. �
Remark 5.10. It is well known (see, e.g., [9, Sec. 9.4]) that in the intuitionistic setting, the negation of the 
Fine-Jankov formula of the tree F depicted in Fig. 5 axiomatizes the Scott logic obtained by adding to the 
intuitionistic propositional calculus the Scott axiom

((¬¬p → p) → (p ∨ ¬p)) → (¬p ∨ ¬¬p).

Thus, the logic S4.Grz3 +¬χF can alternatively be axiomatized by adding to S4.Grz3 the Gödel translation 
of the Scott axiom.

The remainder of the paper shows that no new logics arise upon imposing an additional condition on a 
scattered Stone space. In particular, the logic arising from a scattered hereditarily paracompact Stone space 
is either S4.Grz or S4.Grzn for some n ≥ 1. In fact, we prove a stronger result by relaxing compact to locally 
compact and hereditarily paracompact to open hereditarily collectionwise normal and open hereditarily 
strongly zero-dimensional.

6. Basic cardinality results about locally compact Hausdorff spaces

In this section we present basic cardinality results about locally compact Hausdorff spaces that will be 
utilized in Section 7. In what follows we will freely use the Axiom of Choice and view cardinal numbers as 
initial ordinal numbers. For a topological space X and x ∈ X, let χ(x) be the least cardinal number of a 
local base at x. The following result is well known.

Theorem 6.1. (Alexandroff and Urysohn [1]) Let X be locally compact Hausdorff. Then for every x ∈ X and 
every open neighborhood U of x, we have χ(x) ≤ |U |.



G. Bezhanishvili et al. / Annals of Pure and Applied Logic 170 (2019) 558–577 571
The next lemma follows from the well-known technique in the theory of resolvability developed by Hewitt 
[13] (see Theorems 42, 46, and 47). For convenience, we present a sketch of the proof.

Lemma 6.2. Let X be a locally compact Hausdorff space, x ∈ dX, and n ≥ 2. Then there exist pairwise 
disjoint A1, . . . , An ⊆ X \ {x} such that x ∈ dAi for each i = 1, . . . , n.

Proof. (Sketch) If X is finite, then since X is Hausdorff, dX = ∅, and there is nothing to prove. Suppose 
X is infinite. Let γ := χ(x). Then there is a local base at x which can be enumerated as {Uα | α < γ}. Since 
X is Hausdorff and x ∈ dX, each Uα is infinite, and by the Alexandroff and Urysohn theorem, γ ≤ |Uα| for 
each α < γ. We build the Ai by transfinite recursion.

Base step (α = 0): Since U0 \ {x} is infinite, choose distinct a0
1, . . . , a

0
n ∈ U0 \ {x}, and let A0

1 =
{a0

1}, . . . , A0
n = {a0

n}. Then A0
1, . . . , A

0
n ⊆ X\{x} are pairwise disjoint and |A0

i | = 1 < γ for each i = 1, . . . , n.
Recursive step: Let β < γ be nonzero. Assume for each α < β that the pairwise disjoint sets Aα

1 , . . . , A
α
n ⊆

X \ {x} have already been chosen so that |Aα
i | < γ for each i = 1, . . . , n. For each i = 1, . . . , n, we have that ∣∣∣⋃α<β A

α
i

∣∣∣ < γ because β < γ and |Aα
i | < γ for each α < β. Since γ ≤ |Uβ |, we may choose distinct

aβ1 , . . . , a
β
n ∈ (Uβ \ {x}) \

(⋃
α<β

Aα
1 ∪ · · · ∪

⋃
α<β

Aα
n

)
,

and set

Aβ
1 =

(⋃
α<β

Aα
1

)
∪ {aβ1}, . . . , Aβ

n =
(⋃

α<β
Aα

n

)
∪ {aβn}.

We then have that |Aβ
i | < γ for each i = 1, . . . , n. Define

A1 =
⋃

β<γ
Aβ

1 , . . . , An =
⋃

β<γ
Aβ

n.

Then A1, . . . , An ⊆ X \ {x} are pairwise disjoint.
Let U be an open neighborhood of x. Because {Uα | α < γ} is a local base at x, there is α < γ such that 

Uα ⊆ U . For each i we have that aαi ∈ (Uα \ {x}) ∩Ai. This yields that (U \ {x}) ∩Ai �= ∅. Thus, x ∈ dAi

for each i = 1, . . . , n. �
Remark 6.3. In Lemma 6.2, we can replace n by an arbitrary cardinal κ strictly less than γ.

Recall that a family F of subsets of a space X is discrete provided for each x ∈ X there is an open 
neighborhood that has nonempty intersection with at most one member of F . Note that a discrete family is 
pairwise disjoint. Also recall that a T1-space X is collectionwise normal provided if {Fi | i ∈ I} is a discrete 
family of closed subsets of X, then there is a discrete family {Ui | i ∈ I} of open subsets of X such that 
Fi ⊆ Ui for all i ∈ I. Clearly a collectionwise normal space is normal (and hence also Hausdorff).

Lemma 6.4. Let X be a locally compact collectionwise normal space of modal Krull dimension n ∈ ω. Then 
there is a family {Bx | x ∈ dnX} of pairwise disjoint clopen subsets of X such that Bx ∩ dnX = {x} for 
each x ∈ dnX.

Proof. Theorem 4.5 yields that X is scattered and zero-dimensional. By Theorem 4.9, dnX �= ∅ and 
dn+1X = ∅. Therefore, dnX is discrete in X, and so {{x} | x ∈ dnX} is a discrete family of closed subsets 
of X. Since X is collectionwise normal, there is a discrete family {Ux | x ∈ dnX} of open subsets of X
such that {x} ⊆ Ux for each x ∈ dnX. Being discrete, {Ux | x ∈ dnX} is pairwise disjoint. Because X is 
zero-dimensional, there is a family {Bx | x ∈ dnX} of clopen subsets of X such that x ∈ Bx and Bx ⊆ Ux
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Fig. 6. The subtrees Fi of F.

for each x ∈ dnX. Clearly {Bx | x ∈ dnX} is pairwise disjoint since {Ux | x ∈ dnX} is pairwise disjoint. 
Let x ∈ dnX. Obviously Bx ∩ dnX ⊇ {x}. Let y ∈ Bx ∩ dnX. Then y ∈ Bx ⊆ Ux, giving that Ux ∩Uy �= ∅. 
Thus, x = y and so Bx ∩ dnX = {x}. �
7. Logics arising from scattered locally compact HP spaces

The main results of this section are a mapping theorem for scattered locally compact open hereditarily 
collectionwise normal and open hereditarily strongly zero-dimensional spaces and a classification of the 
logics arising as L(X) for such an X. As a corollary, we classify the logics arising as L(X) for X a scattered 
locally compact hereditarily paracompact space.

We recall that a Tychonoff space X is strongly zero-dimensional if βX is zero-dimensional (see, e.g., 
[10, Section 6.2]). Clearly being zero-dimensional is a hereditary property, but strong zero-dimensionality 
is not hereditary. We call a strongly zero-dimensional space X open hereditarily strongly zero-dimensional
(OHSZ) if every nonempty open subspace of X is strongly zero-dimensional. Similarly, we call a T1-space 
X open hereditarily collectionwise normal (OHCN) whenever each open subspace of X is collectionwise 
normal.

Theorem 7.1. Let n ∈ ω, X be a locally compact OHCN OHSZ space of modal Krull dimension n, and F be 
a finite tree of depth at most n +1. Then there is an interior surjection f : X → F that maps each x ∈ dnX
to the root of F.

Proof. Proof by induction on n ∈ ω. If n = 0, then mdim(X) = 0, giving that X is discrete. Since F consists 
of only the root, there is only one mapping of X onto F (sending every element of X to the root of F), and 
it is clearly interior. This establishes the base case.

Let n > 0. Suppose for every locally compact OHCN OHSZ space Y of modal Krull dimension n − 1 and 
every finite tree F of depth at most n, there is an interior mapping of Y onto F sending dn−1

Y Y to the root 
of F.

Let X be a locally compact OHCN OHSZ space of modal Krull dimension n. Then X is scattered by 
Theorem 4.5. Let F be a finite tree of depth at most n + 1 and let r be the root of F. If r has no children, 
then there is only one mapping of X onto F, and it is clearly interior. Suppose c1, . . . , cm are the children 
of r. For i = 1, . . . , m, let Fi be the subtree of F whose underlying set is ↑ci, see Fig. 6. Then the depth of 
each Fi is at most n.

By Lemma 6.4, there is a pairwise disjoint family {Bx | x ∈ dnX} of clopens in X such that Bx ∩ dnX =
{x} for each x ∈ dnX. Since X is locally compact, so is each subspace Bx∩dn−1X. By Lemma 6.2, there are 
pairwise disjoint Ax

1 , . . . , A
x
m ⊆ Bx∩dn−1X such that x ∈ d(Ax

i ) for each i = 1, . . . , m. Set Fi =
⋃

x∈dnX Ax
i

for i = 1, . . . , m, see Fig. 7.
Clearly Fi ⊆ dn−1X and Fi ∩ dnX = ∅ for each i. It is also obvious that dnX ⊆ cFi which yields that 

Fi∪dnX ⊆ cFi. To see the reverse inclusion, suppose x /∈ Fi∪dnX. Then x /∈ d(dn−1X), so there is an open 
neighborhood U of x such that (U \ {x}) ∩ dn−1X = ∅. Therefore, U ∩ Fi ⊆ U ∩ dn−1X ⊆ {x}, yielding 
that U ∩ Fi = ∅. Thus, x /∈ cFi, and so cFi = Fi ∪ dnX. Because Fi and dnX are disjoint, we have that 
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Fig. 7. Depiction of the families Bx, Ax
i , and Fi.

Fi = (Fi ∪ dnX) \ dnX = cFi ∩ (X \ dnX) is closed in X \ dnX. Consequently, F1, . . . , Fm is a pairwise 
disjoint family of nonempty closed subsets of the subspace X \ dnX of X.

Since X is a locally compact OHCN OHSZ space, so is X \dnX (since X \dnX is open in X). Therefore, 
X \ dnX is a normal strongly zero-dimensional space. Thus, [5, Lemma 3.2] is applicable, and so there is a 
clopen partition {Yi | 1 ≤ i ≤ m} of X \ dnX such that Fi ⊆ Yi for each i = 1, . . . , m, see Fig. 8.

Fig. 8. Depiction of the family Yi.

Fix i = 1, . . . , m. Clearly dnX ⊆ cFi ⊆ cYi, which gives that Yi ∪ dnX ⊆ cYi. Also Ui :=
⋃

j �=i Yj is open 
in X since Ui is open in X \dnX and X \dnX is open in X. Because {Y1, . . . , Ym, dnX} is a partition of X, 
we have that Yi ∪ dnX = X \ Ui. Therefore, Yi ∪ dnX is a closed subset of X containing Yi and contained 
in cYi. Thus, cYi = Yi ∪ dnX.

Because Yi is clopen in X \ dnX, which is open in X, we have that Yi is open in X. Since X is a locally 
compact OHCN OHSZ space, so is Yi. By Lemma 4.6,

dnYi
Yi = dn(X) ∩ Yi ⊆ dn(X) ∩ (X \ dnX) = ∅

and

dn−1
Yi

Yi = dn−1(X) ∩ Yi ⊇ Fi �= ∅.

Since X is scattered Hausdorff, so is Yi. Therefore, Theorem 4.9 yields that mdim(Yi) = n − 1, and so the 
inductive hypothesis is applicable to Yi. Let fi : Yi → Fi be an onto interior mapping sending dn−1

Yi
Yi to ci.

Define f : X → F by f(x) = r when x ∈ dnX and f(x) = fi(x) when x ∈ Yi, see Fig. 9. Then f is a well 
defined surjection since {Y1, . . . , Ym, dnX} is a partition of X, each fi maps Yi onto Fi, and f [dnX] = {r}. 
It is left to show that f is interior.



574 G. Bezhanishvili et al. / Annals of Pure and Applied Logic 170 (2019) 558–577
Fig. 9. Depiction of f : X → F.

First we show that f is continuous. Let w ∈ F. If w = r, then f−1[↑w] = f−1[F] = X is open in X. If 
w �= r, then ↑w ⊆ Fi for some i = 1, . . . , m. Therefore, f−1[↑w] = (fi)−1[↑w] is open in Yi. But Yi is open 
in X, and so f−1[↑w] is open in X. Thus, f is continuous.

Next we show that f is open. Let U be open in X. We have:

f [U ] = f [U ∩X] = f [U ∩ (Y1 ∪ Y2 ∪ · · · ∪ Ym ∪ dnX)]

= f [(U ∩ Y1) ∪ (U ∩ Y2) ∪ · · · ∪ (U ∩ Ym) ∪ (U ∩ dnX)]

= f [U ∩ Y1] ∪ f [U ∩ Y2] ∪ · · · ∪ f [U ∩ Ym] ∪ f [U ∩ dnX]

= f1[U ∩ Y1] ∪ f2[U ∩ Y2] ∪ · · · ∪ fm[U ∩ Ym] ∪ f [U ∩ dnX].

Since U ∩Yi is open in Yi, we have fi[U ∩Yi] is open in Fi, and hence is open in F. If U ∩ dnX = ∅, then 
f [U∩dnX] = ∅, and so f [U ] is a union of open subsets of F, hence an open subset of F. Suppose x ∈ U∩dnX. 
Then for each i = 1, . . . , m we have that x ∈ cFi, giving that ∅ �= U ∩ Fi ⊆ U ∩ dn−1

Yi
Yi. Therefore, 

ci ∈ fi[U ∩ dn−1
Yi

Yi] ⊆ fi[U ∩ Yi], yielding that fi[U ∩ Yi] = Fi. Thus, f [U ] = F1 ∪ F2 ∪ · · · ∪ Fm ∪ {r} = F is 
open in F. Consequently, f is open. �
Corollary 7.2. Let n ∈ ω, X be a scattered locally compact OHCN OHSZ space, and F a finite tree of depth 
at most n +1. If dnX �= ∅, then there is an interior surjection f : X \dn+1X → F that maps each x ∈ dnX
to the root of F.

Proof. Let Y = X \ dn+1X. Then Y is an open scattered locally compact OHCN OHSZ subspace of X. By 
Lemma 4.6,

dnY Y = dn(X) ∩ Y = dn(X) ∩ (X \ dn+1X) = dnX \ dn+1X �= ∅

because dnX\dn+1X = Iso(dnX), and since dnX is a nonempty subspace of a scattered space, Iso(dnX) �= ∅. 
Also,

dn+1
Y Y = dn+1(X) ∩ Y = dn+1(X) ∩ (X \ dn+1X) = ∅.

Therefore, mdim(Y ) = n by Theorem 4.9. Now apply Theorem 7.1 to Y . �
Theorem 7.3. Let X be a nonempty scattered locally compact OHCN OHSZ space.

1. If mdim(X) = ∞, then L(X) = S4.Grz.
2. If mdim(X) = n ∈ ω, then L(X) = S4.Grzn+1.

Proof. Since X is scattered, S4.Grz ⊆ L(X). To prove (1), let ϕ be a modal formula such that S4.Grz � ϕ. 
Then there is a finite tree F refuting ϕ. Suppose the depth of F is n ≥ 1. Since mdim(X) = ∞, by 
Theorem 4.9, dnX �= ∅ for all n ∈ ω. As dn−1X �= ∅, Corollary 7.2 yields that F is an interior image of 
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the open subspace X \ dnX of X. Because interior images reflect refutations (see, e.g., [2, Proposition 2.9]), 
X \ dnX refutes ϕ. Since open subspaces reflect refutations (see, e.g., [2, Proposition 2.9]), X refutes ϕ. 
Thus, L(X) = S4.Grz.

To prove (2), suppose mdim(X) = n ∈ ω. Then X � bdn+1 by Proposition 2.3. Therefore, S4.Grzn+1 ⊆
L(X). Conversely, let ϕ be a modal formula such that S4.Grzn+1 � ϕ. Then there is a finite tree F of depth 
at most n + 1 refuting ϕ. By Theorem 7.1, F is an interior image of X. Thus, X refutes ϕ, and hence 
L(X) = S4.Grzn+1. �

An important class of spaces that simultaneously generalizes both the class of metrizable spaces and the 
class of compact Hausdorff spaces is that of paracompact spaces (see, e.g., [10, Section 5.1] for a detailed 
account). A space X is hereditarily paracompact (HP) if each subspace of X is paracompact. It turns out 
(see, e.g., [10, page 314]) that a space is HP iff it is open hereditarily paracompact.

Lemma 7.4. A scattered locally compact HP space X is both OHCN and OHSZ.

Proof. Since every paracompact space is collectionwise normal [10, Theorem 5.1.18], we have that an HP 
space is hereditarily collectionwise normal, and hence OHCN. Let Y be a nonempty open subspace of X. 
Then Y is a scattered locally compact paracompact space. It follows from Theorem 4.5 that Y is zero-
dimensional. By [10, Theorem 6.2.10], Y is strongly zero-dimensional. Thus, X is OHSZ. �

We use Lemma 7.4 to obtain the following corollaries to Theorem 7.1, Corollary 7.2, and Theorem 7.3.

Corollary 7.5. If in Theorem 7.1 OHCN OHSZ is replaced by HP, then the conclusion still holds.

Proof. A locally compact HP space of finite modal Krull dimension is scattered by Theorem 4.5. The result 
now follows from Lemma 7.4 and Theorem 7.1. �
Corollary 7.6. If in Corollary 7.2 OHCN OHSZ is replaced by HP, then the conclusion still holds.

Proof. The result follows immediately from Lemma 7.4 and Corollary 7.2. �
Corollary 7.7. If in Theorem 7.3 we replace OHCN OHSZ by HP, the conclusion still holds.

Proof. The result follows immediately from Lemma 7.4 and Theorem 7.3. �
As follows from the next example, there are some well studied spaces to which Theorem 7.3 applies but 

Corollary 7.7 does not.

Example 7.8. Let ω1 be the least uncountable ordinal with the interval topology. It follows from [23] that ω1
is OHCN, and it follows from [12, Theorem 5.1] that ω1 is OHSZ. On the other hand, ω1 is not paracompact 
(see, e.g., [10, Example 5.1.21]).

8. Concluding remarks

We conclude the paper with some, seemingly challenging, open problems:

• Is there a Mrowka space X satisfying βX = αX such that L(βX) = S4.Grz3 + ¬χF? We conjecture 
there is such a Mrowka space. To prove this conjecture, we point out that S4.Grz3 + ¬χF is complete 
with respect to the following class K of frames. Recall that an S4-frame F = (W, R) is path connected
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provided for any w, v ∈ W there are w1, . . . , wn ∈ W such that w1 = w, wn = v, and either wiRwi+1
or wi+1Rwi for each 1 ≤ i < n. The Alexandroff space of a path connected S4-frame is a connected 
topological space. The class K consists of finite rooted posets of depth ≤ 3 such that those of depth 3
satisfy

(†) the subframe obtained by deleting the root is path connected.

Thus, it is enough to show that every finite rooted poset of depth 3 satisfying (†) is an interior image 
of βX. While we have a candidate for X and can construct interior mappings for a number of examples, 
the task in general remains elusive due to the combinatorial complexity of these posets.

• Classify the logics arising as L(βX) where X is an arbitrary Mrowka space (satisfying βX = αX).
• What is the logic of an arbitrary scattered Stone space?
• What is the logic of an arbitrary Stone space?
• What is the logic of an arbitrary compact Hausdorff space?
• What is the logic of an arbitrary locally compact Hausdorff space?

The same questions can be asked in the intuitionistic setting. Note that the logics S4, S4.1, and S4.Grz
are modal companions of the intuitionistic propositional calculus IPC. Thus, in the intuitionistic setting 
we obtain IPC and the logics IPCn (n ≥ 1), which are the intuitionistic analogues of the logics S4.Grzn. 
In addition, as follows from Remark 5.10, we obtain a logic between the Scott logic of depth 3 and IPC2. 
A complete classification remains a challenging open problem in the intuitionistic setting as well.
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